The RNA chaperone Hfq is required for virulence of Bordetella pertussis.

نویسندگان

  • Ilona Bibova
  • Karolina Skopova
  • Jiri Masin
  • Ondrej Cerny
  • David Hot
  • Peter Sebo
  • Branislav Vecerek
چکیده

Bordetella pertussis is a Gram-negative pathogen causing the human respiratory disease called pertussis or whooping cough. Here we examined the role of the RNA chaperone Hfq in B. pertussis virulence. Hfq mediates interactions between small regulatory RNAs and their mRNA targets and thus plays an important role in posttranscriptional regulation of many cellular processes in bacteria, including production of virulence factors. We characterized an hfq deletion mutant (Δhfq) of B. pertussis 18323 and show that the Δhfq strain produces decreased amounts of the adenylate cyclase toxin that plays a central role in B. pertussis virulence. Production of pertussis toxin and filamentous hemagglutinin was affected to a lesser extent. In vitro, the ability of the Δhfq strain to survive within macrophages was significantly reduced compared to that of the wild-type (wt) strain. The virulence of the Δhfq strain in the mouse respiratory model of infection was attenuated, with its capacity to colonize mouse lungs being strongly reduced and its 50% lethal dose value being increased by one order of magnitude over that of the wt strain. In mixed-infection experiments, the Δhfq strain was then clearly outcompeted by the wt strain. This requirement for Hfq suggests involvement of small noncoding RNA regulation in B. pertussis virulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality

Bordetella pertussis, the causative agent of human whooping cough (pertussis) produces a complex array of virulence factors in order to establish efficient infection in the host. The RNA chaperone Hfq and small regulatory RNAs are key players in posttranscriptional regulation in bacteria and have been shown to play an essential role in virulence of a broad spectrum of bacterial pathogens. This ...

متن کامل

Virulence Factors Variation Among Bordetella Pertussis Isolates in Iran

Pertussis is still endemic and the recently resurgence of the disease caused by Bordetella pertussis has been shown in many countries. The polymorphism of the virulence genes of B. pertussis and lack of any information about the allelic variation between the Iranian isolates promotes us to analysis of the genes encoded virulence factors including ptxS1, prn, fim3 and cya to understand the diffe...

متن کامل

Allelic variations between vaccine strains and circulating strains in pxtP of Bordetella pertussis in Iran

Introduction: Despite high level of vaccination against pertussis‚ whooping cough has re-emerged as a health threat, especially in infants. This could be related to expansion of Bordetella pertussis with novel alleles for virulence factors including the pertussis toxin promoter, ptxP3. Compared to ptxp1 strains‚ ptxp3 strains produce more pertussis toxin which results in immune supp...

متن کامل

Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora.

Hfq is a global small RNA (sRNA) chaperone that interacts with Hfq-regulated sRNAs and functions in the posttranscriptional regulation of gene expression. In this work, we identified Hfq to be a virulence regulator in the Gram-negative fire blight pathogen Erwinia amylovora. Deletion of hfq in E. amylovora Ea1189 significantly reduced bacterial virulence in both immature pear fruits and apple s...

متن کامل

C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA.

The bacterial Sm protein and RNA chaperone Hfq stabilizes small noncoding RNAs (sRNAs) and facilitates their annealing to mRNA targets involved in stress tolerance and virulence. Although an arginine patch on the Sm core is needed for Hfq's RNA chaperone activity, the function of Hfq's intrinsically disordered C-terminal domain (CTD) has remained unclear. Here, we use stopped flow spectroscopy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 81 11  شماره 

صفحات  -

تاریخ انتشار 2013